Adaptive
A static load is applied to the center of an ellipsoidal dome. Shell elements are used. Nodes at the base of the dome are constrained, and included in a NODFOR output database. Adaptivity is used to automatically refine the mesh in areas of high curvature.
https://www.dynaexamples.com/implicit/basic-examples/adaptive
https://www.dynaexamples.com/@@site-logo/LS-DYNA-Examples-Logo480x80.png
Adaptive
A static load is applied to the center of an ellipsoidal dome. Shell elements are used. Nodes at the base of the dome are constrained, and included in a NODFOR output database. Adaptivity is used to automatically refine the mesh in areas of high curvature.
LS-DYNA Implicit Workshop Problem #10: Adaptive Ellipsoidal Dome Objectives * Learn to activate mesh adaptivity in an implicit simulation. * Learn how to minimize hourglass problems. Problem Description A static load is applied to the center of an ellipsoidal dome. Shell elements are used. Nodes at the base of the dome are constrained, and included in a NODFOR output database. Adaptivity is used to automatically refine the mesh in areas of high curvature. Input Filename: aellipse.k Procedure Copy the input file to your local directory. Using an editor, view the input file and answer the following questions: 1. How frequently will the mesh be evaluated for refinement? 2. How many times can each element be subdivided? 3. How do you indicate which parts will be adapted? 4. Which element formulation is used? 5. How is load applied? Execute the simulation, and view the results with the postprocessor. 6. How many time steps and cycles were used? steps cycles 7. Applied load: Center displacement: 8. Does the adaptive mesh improve the hourglassing problem Switch to pressure driven load application, and repeat the simulation. Postprocess the results. Using the NODFOR database, verify that the load is applied correctly as the mesh is refined. 9. How many time steps and cycles were used? steps cycles 10. Does the pressure load improve nonlinear convergence? 11. Applied loadr: Center displacement: Experiment with shell element formulation #16. 12. Does shell type #16 improve hourglassing? 13. Does shell type #16 improve convergence behavior (number of steps/cycles)?
*CONTROL_ADAPTIVE *CONTROL_HOURGLASS *CONTROL_IMPLICIT_AUTO *CONTROL_IMPLICIT_DYNAMICS *CONTROL_IMPLICIT_GENERAL *CONTROL_IMPLICIT_SOLUTION *CONTROL_IMPLICIT_SOLVER *CONTROL_TERMINATION *DATABASE_BINARY_D3PLOT *DATABASE_EXTENT_BINARY *DATABASE_GLSTAT *DATABASE_NODAL_FORCE_GROUP *DATABASE_NODFOR $*DEFINE_CURVE *DEFINE_CURVE *END *KEYWORD *LOAD_NODE_POINT $*LOAD_SEGMENT *MAT_elastic *PART *SECTION_SHELL *SET_NODE_LIST *TITLE
*KEYWORD
*TITLE
PINCHED ELLIPSE
$
$ A. Tabiei, March 99
$ units; mm, s, ton, N
$
*CONTROL_TERMINATION
1.0000
$
*CONTROL_ADAPTIVE
$ adpfreq adptol adpopt maxlvl tbirth tdeath lcadp ioflag
0.10 5.000 2 3 0.0 0.0 0 0
$ adpsize adpass ireflg adpene
0.0000000 1 0 1.0
$
$========1=========2=========3=========4=========5=========6=========7=========8
$
*CONTROL_IMPLICIT_GENERAL
$ imflag dt0 iefs nstepsb igso
1 0.01 0 0 0
$
*CONTROL_IMPLICIT_SOLUTION
$ nlsolvr ilimit maxref dctol ectol rctol lstol
0 0 0 0.0 0.0 0 0
$ dnorm divflag inistif nlprint
0 0 0 0
$
*CONTROL_IMPLICIT_SOLVER
$ lsolvr prntflg negeig
0 0 0
$
*CONTROL_IMPLICIT_AUTO
$ iauto iteopt itewin dtmin dtmax
1 0 0 0.0 0.0
$
*CONTROL_IMPLICIT_DYNAMICS
$ imass gamma beta
0 0.0 0.0
$
$========1=========2=========3=========4=========5=========6=========7=========8
$
*DATABASE_EXTENT_BINARY
$ neiph neips maxint strflg sigflg epsflg rltflg engflg
1 1
$ cmpflg ieverp beamip
*DATABASE_BINARY_D3PLOT
0.01
*DATABASE_GLSTAT
0.01
*DATABASE_NODFOR
0.01
*DATABASE_NODAL_FORCE_GROUP
2
*SET_NODE_LIST
2
1 7 13 19 25 31 37 48
54 60 66 72 78 84 91 97
103 109 115 121 127 206 212 218
224 230 236 242
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$
*CONTROL_HOURGLASS
4
$
*MAT_elastic
$ MID RO E PR
1 7.890E-09 2.100E+05 3.000E-01
$
*SECTION_SHELL
$ SID ELFORM
1 2
3.000E-00 3.000E-00 3.000E-00 3.000E-00
$
*PART
SHELL
$ PID SID MID ADPOPT
1 1 1 0
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$
*LOAD_NODE_POINT
$ NID DOF LCID SF
164 3 1 -1.0
$
*DEFINE_CURVE
1
0.00000000000000E+00 00.000000000000E+00
1.00000000000000E+00 500000.00000000E+00
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$
$*LOAD_SEGMENT
$$ LCID SF N1 N2 N3 N4
$ 2 -1.0 154 155 164 163
$ 2 -1.0 155 156 165 164
$ 2 -1.0 163 164 173 172
$ 2 -1.0 164 165 174 173
$
$*DEFINE_CURVE
$ 2
$0.00000000000000E+00 00.000000000000E+00
$1.00000000000000E+00 7500.0000000000E+00
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*NODE
1 22.627417 -16.97056299999 0.0 7 7
2 22.332757 -16.749568 3.8763777
3 21.462 -16.09649999999 7.615231
4 20.065733999999 -15.0493 11.096923
5 18.217324 -13.662993 14.235898
6 16.0 -12.0 16.970562999999
7 27.446269999999 -12.339774 0.0 7 7
8 26.906521999999 -12.067746 4.8105589
9 25.311105 -11.481794 9.1543237
10 22.863424999999 -10.624359 13.003226
11 19.716536999999 -9.5432552 16.317444999999
12 16.0 -8.290928299999 19.059394
13 30.783318999999 -6.5549861 0.0 7 7
14 30.006588 -6.3723023 5.3778628
15 27.897109 -6.0202527 10.099093
16 24.740081 -5.5252473 14.183842
17 20.726296 -4.9196061 17.611333999999
18 16.0 -4.2342801 20.348731
19 32.0 0.0 0.0 7 7
20 31.126259 0.0 5.5700325
21 28.826521 0.0 10.420188
22 25.412948 0.0 14.585178
23 21.088252 0.0 18.051265
24 16.0 0.0 20.78461
25 30.783199 6.5553032 0.0 7 7
26 30.006492999999 6.3725534 5.3778627
27 27.897037999999 6.0204347 10.099093999999
28 24.740034 5.525362 14.183843
29 20.726272999999 4.9196591 17.611333999999
30 16.0 4.2342801 20.348731
31 27.447541999999 12.338182 0.0 7 7
32 26.907578999999 12.066411 4.8105821
33 25.311917999999 11.480756 9.1543614
34 22.863966 10.623673 13.003251
35 19.716805 9.5429215 16.317457
36 16.0 8.2909282999999 19.059394
37 22.627417 16.970562999999 0.0 7 7
38 22.332757 16.749568 3.8763777
39 21.462 16.096499999999 7.615231
40 20.065733999999 15.0493 11.096923
41 18.217324 13.662993 14.235898
42 16.0 12.0 16.970562999999
43 -16.0 -12.0 16.970562999999
44 -18.218449 -13.66383699999 14.234035
45 -20.065732 -15.049299 11.096848
46 -21.462235 -16.09667599999 7.6152887
47 -22.332974 -16.749731 3.8764176
48 -22.627417 -16.97056299999 0.0 7 7
49 -16.0 -8.290928299999 19.059394
50 -19.723448 -9.5445661 16.311979
51 -22.86926899999 -10.625037 12.996888999999
52 -25.31559599999 -11.482084 9.1469713
53 -26.908767 -12.067244 4.804753
54 -27.44754199999 -12.338182 0.0 7 7
55 -16.0 -4.2342801 20.348731
56 -20.737171 -4.9208503 17.603784
57 -24.74971199999 -5.5265164 14.173892
58 -27.90404399999 -6.0215693 10.087524
59 -30.009139 -6.3732333 5.368744
60 -30.783199 -6.5553032 0.0 7 7
61 -16.0 0.0 20.78461
62 -21.100687 0.0 18.043088999999
63 -25.42426199999 0.0 14.574083
64 -28.834848 0.0 10.407221
65 -31.129503 0.0 5.5598258
66 -32.0 0.0 0.0 7 7
67 -16.0 4.2342801 20.348731
68 -20.73719399999 4.9207969 17.603784
69 -24.749759 5.5264012 14.173892
70 -27.904115 6.0213868 10.087522999999
71 -30.00923399999 6.3729818 5.3687441
72 -30.78331899999 6.5549861 0.0 7 7
73 -16.0 8.2909282999999 19.059394
74 -19.723178 9.5449018999999 16.311966
75 -22.86872599999 10.625724999999 12.996864
76 -25.314781 11.483124 9.1469337999999
77 -26.907708 12.06858 4.80473
78 -27.44626999999 12.339774 0.0 7 7
79 -16.0 12.0 16.970562999999
80 -18.218449 13.663836999999 14.234035
81 -20.065732 15.049299 11.096848
82 -21.462235 16.096675999999 7.6152887
83 -22.332974 16.749731 3.8764176
84 -22.627417 16.970562999999 0.0 7 7
91 -17.48928 -20.098392 0.0 7 7
92 -17.26152199999 -19.650828 4.7161829
93 -16.542732 -18.416694 9.1044219
94 -15.403636 -16.59363799999 12.93003
95 -13.932169 -14.398075 16.109351
96 -12.209959 -12.0 18.659607
97 -11.88277199999 -22.28395899999 0.0 7 7
98 -11.726379 -21.686772 5.3231273
99 -11.217618 -20.039218 10.180745999999
100 -10.418631 -17.66228299999 14.247301
101 -9.4029368 -14.898503 17.444227
102 -8.2337168 -12.0 19.847377
103 -6.0041111 -23.57376199999 0.0 7 7
104 -5.9212821 -22.889416 5.6879244
105 -5.6568419 -20.99456 10.827211999999
106 -5.2464861 -18.28748699999 15.036111999999
107 -4.7312145 -15.188826 18.240293999999
108 -4.1437314 -12.0 20.551518
109 0.0 -24.0 0.0 7 7
110 0.0 -23.286255 5.8095019
111 0.0 -21.30883199999 11.042358
112 0.0 -18.49231299999 15.298182
113 0.0 -15.283376 18.504550999999
114 0.0 -12.0 20.784751
115 6.0041111 -23.57376199999 0.0 7 7
116 5.9212863 -22.889278 5.6884796
117 5.6569458 -20.994126 10.828023
118 5.2467251 -18.286845 15.036846
119 4.7301217 -15.187905 18.241220999999
120 4.1437648 -12.0 20.551594999999
121 11.882771999999 -22.28395899999 0.0
122 11.726438 -21.686547 5.3239722
123 11.217784999999 -20.038532 10.181991999999
124 10.41892 -17.66126699999 14.248442
125 9.4018628 -14.896951 17.445878
126 8.2337532 -12.0 19.847474999999
127 17.48928 -20.098392 0.0 7 7
128 17.261614 -19.650618 4.7168692
129 16.542929 -18.41608799999 9.1054476
130 15.403937 -16.592737 12.930984
131 13.931139 -14.39643 16.111322
132 12.20998 -12.0 18.659656999999
143 12.209709999999 -8.276903799999 20.582445
144 8.2335151999999 -8.2726636 21.66635
145 4.1437061 -8.2721876 22.313956
146 0.0 -8.2723656 22.529268999999
147 -4.1436886 -8.2722233 22.313943999999
148 -8.2335029 -8.2727105 21.666335
149 -12.209705 -8.2769288 20.582436999999
152 12.209707999999 -4.2329685 21.776734999999
153 8.2335121 -4.2360558 22.801832
154 4.1437017 -4.2392893 23.417304999999
155 0.0 -4.2405908 23.622392
156 -4.143693 -4.2393245 23.417299
157 -8.233506 -4.2361022 22.801825
158 -12.209706 -4.2329933 21.776731
161 12.209707 0.0 22.184324
162 8.233509 0.0 23.191976
163 4.1436974 0.0 23.797936
164 0.0 0.0 24.0
165 -4.1436974 0.0 23.797936
166 -8.233509 0.0 23.191976
167 -12.209707 0.0 22.184324
170 12.209706 4.2329932 21.776731
171 8.2335059 4.2361022 22.801825
172 4.143693 4.2393245 23.417299
173 0.0 4.2405908 23.622392
174 -4.1437017 4.2392893 23.417304999999
175 -8.233511999999 4.2360558 22.801832
176 -12.20970799999 4.2329684 21.776734999999
179 12.209704 8.2769288 20.582436999999
180 8.2335027 8.2727105 21.666335
181 4.1436886 8.2722233 22.313943999999
182 0.0 8.2723656 22.529268999999
183 -4.1437061 8.2721876 22.313956
184 -8.233515 8.2726636 21.66635
185 -12.209709 8.2769037999999 20.582445
188 12.209959 12.0 18.659607
189 8.2337168 12.0 19.847377
190 4.1437314 12.0 20.551518
191 0.0 12.0 20.784751
192 -4.1437648 12.0 20.551594999999
193 -8.2337532 12.0 19.847474999999
194 -12.20998 12.0 18.659656999999
202 -13.932105 14.398275999999 16.109202
203 -15.403756 16.593589 12.930012
204 -16.54281699999 18.416656 9.1044137
205 -17.26155199999 19.650814 4.7161801
206 -17.48928 20.098392 0.0 7 7
208 -9.4027747 14.898944999999 17.443898999999
209 -10.418839 17.662222 14.247291
210 -11.21776599999 20.039172 10.180744
211 -11.726431 21.686757 5.3231261
212 -11.88277199999 22.283958999999 0.0 7 7
214 -4.7309327 15.189534999999 18.239744999999
215 -5.246739 18.287448 15.03611
216 -5.6570229 20.994532 10.827214
217 -5.9213468 22.889408 5.6879202
218 -6.0041111 23.573761999999 0.0 7 7
220 0.0 15.284345 18.503751
221 0.0 18.492312999999 15.298182
222 0.0 21.308831999999 11.042358
223 0.0 23.286258 5.8094905
224 0.0 24.0 0.0 7 7
226 4.730731 15.189071999999 18.240159999999
227 5.2464714 18.286884 15.036848
228 5.6567643 20.994154999999 10.828021
229 5.9212221 22.889291 5.6884616
230 6.0041111 23.573761999999 0.0 7 7
232 9.4026744 14.898198 17.444566999999
233 10.418711 17.661328 14.248452
234 11.217637 20.038578 10.181994
235 11.726387 21.686567 5.3239526
236 11.882771999999 22.283958999999 0.0 7 7
238 13.932152 14.397596999999 16.109787
239 15.403816 16.592786 12.931003
240 16.542845 18.416126999999 9.1054556
241 17.261586 19.650635 4.7168534
242 17.48928 20.098392 0.0 7 7
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ELEMENT_SHELL
1 1 1 2 8 7
2 1 2 3 9 8
3 1 3 4 10 9
4 1 4 5 11 10
5 1 5 6 12 11
6 1 7 8 14 13
7 1 8 9 15 14
8 1 9 10 16 15
9 1 10 11 17 16
10 1 11 12 18 17
11 1 13 14 20 19
12 1 14 15 21 20
13 1 15 16 22 21
14 1 16 17 23 22
15 1 17 18 24 23
16 1 19 20 26 25
17 1 20 21 27 26
18 1 21 22 28 27
19 1 22 23 29 28
20 1 23 24 30 29
21 1 25 26 32 31
22 1 26 27 33 32
23 1 27 28 34 33
24 1 28 29 35 34
25 1 29 30 36 35
26 1 31 32 38 37
27 1 32 33 39 38
28 1 33 34 40 39
29 1 34 35 41 40
30 1 35 36 42 41
31 1 43 44 50 49
32 1 44 45 51 50
33 1 45 46 52 51
34 1 46 47 53 52
35 1 47 48 54 53
36 1 49 50 56 55
37 1 50 51 57 56
38 1 51 52 58 57
39 1 52 53 59 58
40 1 53 54 60 59
41 1 55 56 62 61
42 1 56 57 63 62
43 1 57 58 64 63
44 1 58 59 65 64
45 1 59 60 66 65
46 1 61 62 68 67
47 1 62 63 69 68
48 1 63 64 70 69
49 1 64 65 71 70
50 1 65 66 72 71
51 1 67 68 74 73
52 1 68 69 75 74
53 1 69 70 76 75
54 1 70 71 77 76
55 1 71 72 78 77
56 1 73 74 80 79
57 1 74 75 81 80
58 1 75 76 82 81
59 1 76 77 83 82
60 1 77 78 84 83
61 1 48 47 92 91
62 1 47 46 93 92
63 1 46 45 94 93
64 1 45 44 95 94
65 1 44 43 96 95
66 1 91 92 98 97
67 1 92 93 99 98
68 1 93 94 100 99
69 1 94 95 101 100
70 1 95 96 102 101
71 1 97 98 104 103
72 1 98 99 105 104
73 1 99 100 106 105
74 1 100 101 107 106
75 1 101 102 108 107
76 1 103 104 110 109
77 1 104 105 111 110
78 1 105 106 112 111
79 1 106 107 113 112
80 1 107 108 114 113
81 1 109 110 116 115
82 1 110 111 117 116
83 1 111 112 118 117
84 1 112 113 119 118
85 1 113 114 120 119
86 1 115 116 122 121
87 1 116 117 123 122
88 1 117 118 124 123
89 1 118 119 125 124
90 1 119 120 126 125
91 1 121 122 128 127
92 1 122 123 129 128
93 1 123 124 130 129
94 1 124 125 131 130
95 1 125 126 132 131
96 1 127 128 2 1
97 1 128 129 3 2
98 1 129 130 4 3
99 1 130 131 5 4
100 1 131 132 6 5
101 1 6 132 143 12
102 1 132 126 144 143
103 1 126 120 145 144
104 1 120 114 146 145
105 1 114 108 147 146
106 1 108 102 148 147
107 1 102 96 149 148
108 1 96 43 49 149
109 1 12 143 152 18
110 1 143 144 153 152
111 1 144 145 154 153
112 1 145 146 155 154
113 1 146 147 156 155
114 1 147 148 157 156
115 1 148 149 158 157
116 1 149 49 55 158
117 1 18 152 161 24
118 1 152 153 162 161
119 1 153 154 163 162
120 1 154 155 164 163
121 1 155 156 165 164
122 1 156 157 166 165
123 1 157 158 167 166
124 1 158 55 61 167
125 1 24 161 170 30
126 1 161 162 171 170
127 1 162 163 172 171
128 1 163 164 173 172
129 1 164 165 174 173
130 1 165 166 175 174
131 1 166 167 176 175
132 1 167 61 67 176
133 1 30 170 179 36
134 1 170 171 180 179
135 1 171 172 181 180
136 1 172 173 182 181
137 1 173 174 183 182
138 1 174 175 184 183
139 1 175 176 185 184
140 1 176 67 73 185
141 1 36 179 188 42
142 1 179 180 189 188
143 1 180 181 190 189
144 1 181 182 191 190
145 1 182 183 192 191
146 1 183 184 193 192
147 1 184 185 194 193
148 1 185 73 79 194
149 1 79 80 202 194
150 1 80 81 203 202
151 1 81 82 204 203
152 1 82 83 205 204
153 1 83 84 206 205
154 1 194 202 208 193
155 1 202 203 209 208
156 1 203 204 210 209
157 1 204 205 211 210
158 1 205 206 212 211
159 1 193 208 214 192
160 1 208 209 215 214
161 1 209 210 216 215
162 1 210 211 217 216
163 1 211 212 218 217
164 1 192 214 220 191
165 1 214 215 221 220
166 1 215 216 222 221
167 1 216 217 223 222
168 1 217 218 224 223
169 1 191 220 226 190
170 1 220 221 227 226
171 1 221 222 228 227
172 1 222 223 229 228
173 1 223 224 230 229
174 1 190 226 232 189
175 1 226 227 233 232
176 1 227 228 234 233
177 1 228 229 235 234
178 1 229 230 236 235
179 1 189 232 238 188
180 1 232 233 239 238
181 1 233 234 240 239
182 1 234 235 241 240
183 1 235 236 242 241
184 1 188 238 41 42
185 1 238 239 40 41
186 1 239 240 39 40
187 1 240 241 38 39
188 1 241 242 37 38
*END
