Basics : Dam break
This LS-DYNA simulation shows a simple free surface example using the ICFD solver. A column of water collapses under the load of gravity. In order to set up such a problem, the domain must be divided in two ICFD_PART_VOLs, one for the fluid, one for the vacuum. For the automatic volume mesher to recognize the initial interface, the keyword MESH_INTERF must be used. Gravity load is applied through the use of LOAD_BODY keyword. Since the solver is implicit, no ramp up is needed.
https://www.dynaexamples.com/icfd/basics-examples/dam_break
https://www.dynaexamples.com/@@site-logo/LS-DYNA-Examples-Logo480x80.png
Basics : Dam break
This LS-DYNA simulation shows a simple free surface example using the ICFD solver. A column of water collapses under the load of gravity. In order to set up such a problem, the domain must be divided in two ICFD_PART_VOLs, one for the fluid, one for the vacuum. For the automatic volume mesher to recognize the initial interface, the keyword MESH_INTERF must be used. Gravity load is applied through the use of LOAD_BODY keyword. Since the solver is implicit, no ramp up is needed.
Fluid pressure fringes
*TITLE *KEYWORD *DATABASE_BINARY_D3PLOT *DEFINE_CURVE_TITLE *ICFD_BOUNDARY_FREESLIP *ICFD_CONTROL_TIME *ICFD_MAT *ICFD_PART *ICFD_PART_VOL *ICFD_SECTION *INCLUDE *LOAD_BODY_Y *MESH_INTERF *MESH_SURFACE_ELEMENT *MESH_SURFACE_NODE *MESH_VOLUME *PARAMETER *END
$-----------------------------------------------------------------------------
$
$ Example provided by Iñaki (LSTC)
$
$ E-Mail: info@dynamore.de
$ Web: http://www.dynamore.de
$
$ Copyright, 2015 DYNAmore GmbH
$ Copying for non-commercial usage allowed if
$ copy bears this notice completely.
$
$X------------------------------------------------------------------------------
$X
$X 1. Run file as is.
$X Requires LS-DYNA MPP R8.0.0 (or higher) with double precision
$X
$X------------------------------------------------------------------------------
$# UNITS: (kg/m/s)
$X------------------------------------------------------------------------------
$X
*KEYWORD
*TITLE
ICFD Dam break
*INCLUDE
mesh.k
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ PARAMETERS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*PARAMETER
R T_end 50.0
R dt_plot 0.20
$
$--- Fluid
$
Rrho_fluid 1000
R mu_fluid 0.001
R dt_fluid 0.000
R grav 9.81
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD CONTROL CARDS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_CONTROL_TIME
$# ttm dt
&T_end &dt_fluid
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD PARTS/ SECTION/ MATERIAL $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_SECTION
$# sid
1
*ICFD_MAT
$# mid flg ro vis
1 1&rho_fluid &mu_fluid
*ICFD_MAT
$# mid flg
2 0
*ICFD_PART
$# pid secid mid
1 1 1
*ICFD_PART
$# pid secid mid
2 1 2
*ICFD_PART
$# pid secid mid
3 1 1
*ICFD_PART_VOL
$# pid secid mid
10 1 1
$# spid1 spid2 spid3 spid4
1 3
*ICFD_PART_VOL
$# pid secid mid
20 1 2
$# spid1 spid2 spid3 spid4
2 3
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD BOUNDARY/INITIAL/LOAD CONDITIONS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_BOUNDARY_FREESLIP
$# pid
1
*ICFD_BOUNDARY_FREESLIP
$# pid
2
*LOAD_BODY_Y
$# lcid sf
1 1
*DEFINE_CURVE_TITLE
Gravity force
$# lcid sidr sfa sfo offa offo dattyp
1 &grav
$# a1 o1
0.0 1.0
10000.0 1.0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD MESH KEYWORDS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*MESH_VOLUME
$# volid
30
$# pid1 pid2
1 2
*MESH_INTERF
$# volid
30
$# pid1
3
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ DATABASE (OUTPUT) $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*DATABASE_BINARY_D3PLOT
&dt_plot
*end
This LS-DYNA simulation shows a simple free surface example using the ICFD solver. A column of water collapses under the load of gravity. In order to set up such a problem, the domain must be divided in two ICFD_PART_VOLs, one for the fluid, one for the vacuum. For the automatic volume mesher to recognize the initial interface, the keyword MESH_INTERF must be used. Gravity load is applied through the use of LOAD_BODY keyword. Since the solver is implicit, no ramp up is needed.
